
72 The Delphi Magazine Issue 57

The Delphi
CLINIC

Edited by Brian Long

Problems with your Delphi project?

Just email Brian Long, our Delphi
Clinic Editor, on clinic@blong.com

Where Is My Documents?

QI understand that Microsoft
advises developers to have

applications store documents in
the My Documents folder (or at
least default to that directory). I
gather this is particularly impor-
tant with the advent of Windows
2000. How can I find out where the
current user’s My Documents
folder is located?

AThis is a job for the Shell API.
The user’s personal docu-

ments folder (My Documents) is
one of a number of special folders
understood by the shell. We have
seen uses of the shell SHGet-
SpecialFolderLocation API to get
the location of some of these spe-
cial directories in The Delphi Clinic
in Issues 39 (Creating Folders and
Shortcuts), 47 (Temporary Internet
Files) and 52 (Computer Picker).

SHGetSpecialFolderLocation re-
turns a pointer to an item identifier
list (a PIDL) which will ultimately
need to be freed by being passed to
the Freemethod of an IMalloc inter-
face reference. Before freeing it,
you can turn the PIDL into a path
with a call to SHGetPathFromIDList.
Listing 1 shows a routine that does
the job. A sample project called
MyDocs.dpr is on the disk this
month and Figure 1 shows it using
the code in Windows 2000.

Incidentally, the code shown in
Issue 52 (based on code from a
MIDAS property editor) does not
free the PIDL. Listing 1 shows how
the IMalloc reference should be
correctly obtained and used to free

a PIDL. I have reported the prop-
erty editor resource leak as a bug.

Getting UNC File Names

QHow do I translate a
drive-based filename to a

UNC name?

AUNC is the Universal Naming
Convention, which descr-

ibes drives in terms of their server
and share names, as in
\\<servername>\<sharename>. The
Delphi Run-Time Library has had a
routine that will do the job since
Delphi 2. Pass your filename into
the ExpandUNCFileName function
and, if the file is located on a drive
that is a network resource (as
opposed to a local drive), the drive
portion of the filename will be
converted to UNC.

If you also wanted local drive ref-
erences translated to UNC, you
would need to do that part your-
self, using knowledge of the com-
puter name (which can be
extracted with the GetComputerName
Win32 API, as discussed in The
Delphi Clinic in Issue 49) and the
active share names.

Adding Tool Buttons

QI am trying to write a toolbar
customisation facility for

our application. My problem
arises when I try to add a new but-
ton to the TToolBar. The help says
there is a method for TToolButton
called SetToolBar, but this is not a
public function. I’m not really au
fait with messing around with the
VCL and was wondering if there is
a way to gain access to this
function?

AThis is a case where you are
looking for a public method,

but the one that does the job is
protected. Consequently, you are
going to have to take advantage of
the details of the definition of the
protected part of a class in Object
Pascal to get the job done. Items in
the protected section of a class can
be accessed by classes inherited
from themselves, and also by any
code in the same unit as the class.

So, to open the door to the pro-
tected section of TToolButton,
define a class inherited from it
(without defining any new fields or
methods) in the unit where you are
creating tool buttons. Next, per-
form a static typecast to treat your

uses
ShellAPI, ShlObj, ActiveX;

function GetMyDocuments: String;
var
PIDL: PItemIDList;
MyDocsC: array[0..MAX_PATH] of Char;
Malloc: IMalloc;

begin
SHGetMalloc(Malloc);
if SHGetSpecialFolderLocation(Application.Handle,
CSIDL_PERSONAL, PIDL) = NOERROR then

try
if SHGetPathFromIDList(PIDL, MyDocsC) then
Result := MyDocsC

else
raise EInvalidOp.Create('Cannot find personal documents folder')

finally
Malloc.Free(PIDL)

end
end;

➤ Listing 1: Finding the location
of the My Documents folder.

➤ Figure 1: Finding the My
Documents folder in Win 2000.

74 The Delphi Magazine Issue 57

tool button object as if it were the
new class (which is identical to
TToolButton, due to it having noth-
ing added to it). Now that you are
accessing a tool button under the
guise of the new class in the cur-
rent unit, you will be able to access
any protected members that you
like. Listing 2 shows the idea.

Modifying The VCL Source

QI have come across the
TMaskEdit bug (see Edit Mask

Hang Bug in The Delphi Clinic from
Issue 18) whereby I get weird
behaviour with some BIOS ver-
sions. The symptoms are flashing
Num Lock and Scroll Lock lights,
and/or very slow (or complete lack
of) keyboard response. The
solution is a simple change to the
protected SetCursor method
within TCustomMaskEdit in the Mask
unit.

I am having difficulties recompil-
ing Mask.pas in isolation under
Delphi 5. I have followed sugges-
tions of placing the unit in a
separate directory and pointing
my compiler search path to it
before Delphi’s Lib directory.
Attempting to recompile causes
the compiler to fail with the mes-
sage: Grids.pas was compiled with
an older version of Mask.pas. It
would seem from this I need to
recompile the entire VCL, which I
am loath to do. How can I compile a
fixed version of the Mask unit that I
can then use to replace the old
version in my Lib directory?

AThe problem may be occur-
ring because your project

has other units used which are
causing interdependency prob-
lems for the compiler with only
that source file available. When try-
ing to solve the problem I copied
the unit to a new folder, saved a
fresh, new, project in there too and
added the Mask.pas source unit to
the project. I built the project and
successfully obtained a Mask.dcu
file. I then applied the changes sug-
gested back in Issue 18, recompiled
the project and got a differently
sized DCU.

However, if this DCU is to be
used as a replacement for the one

in Delphi’s Lib directory, it would
be wise to ensure it is compiled
with exactly the same options as
the original. To accomplish this, I
deleted the project’s CFG file. This
file is generated by Delphi 4 and 5
and acts as a command-line com-
piler configuration file, containing
command-line switches to give
exactly the same set of compiler/
linker switches at the command
line as in the IDE. With the CFG file
gone, a command-line of:

DCC32 -B -$D- -$L- Project1.dpr

will rebuild the project (and so
recompile the Maskunit) using stan-
dard options: no debugging or line
number information, all other
switches as their defaults. The
resultant DCU file can be copied
over the one in the Lib directory
(but don’t forget to backup the
original version first, just in case).

COM Terminology Problem

QI use TClientDataSet compo-
nents in my application

because they provide a convenient
memory-resident table for lookup
lists. Using a TClientDataSet
requires DBCLIENT.DLL to be
distributed with the application.
Recently, my client application
refused to work because it could
not find DBCLIENT.DLL. After some
tracking down I found that this DLL
has a registry entry and it was
incorrect.

I concluded from this that
DBCLIENT.DLL is in fact an OCX.
What are the advantages of an OCX
over a DLL and how do you create
an OCX from a DLL? Also, what is
an OCX’s relationship to ActiveX?

AThe use of TClientDataSet as
a convenient BDE-less

database engine indeed requires
DBCLIENT.DLL to accompany the
application when built with Delphi
3 or 4, and MIDAS.DLL to
accompany the application when
built with Delphi 5 or later.

DBCLIENT.DLL and MIDAS.DLL are
DLL files, but they act as
in-process COM servers. An
in-process COM server is a DLL
that will be loaded into the process
address space of the application
that makes use of it, and which
contains implementations of one
or more COM objects. In order for
COM objects to be accessible,
details about them must be stored
in the Windows registry.

To get details about the COM
objects (and all the new inter-
faces) in an in-proc COM server
into the registry, you either pass it
as a command-line parameter to
the Inprise TRegSvr.exe console
application or the Microsoft
RegSvr32.exe console application.
You can also do it programmati-
cally, using code based on the OCX
Deployment entry in The Delphi
Clinic, Issue 19.

A DLL exports subroutines,
whereas a COM server makes
objects available in a language-
independent manner, so the key
benefit of a COM server is that it
gives applications access to
objects, rather than just functions
and procedures. To make an
in-process COM server in Delphi,
choose File | New... and from the
ActiveX page choose an ActiveX
Library. If you look closely at what
gets generated, you will see that
you have a DLL project in front of
you that exports four routines.
Those four routines are all imple-
mented by the ComServ unit which
is in the uses clause. By exporting
these routines, the DLL has con-
formed to the rules of being an
in-proc COM server.

COM objects make as much of
their implemented functionality
available as they choose by defin-
ing it in terms of interfaces. An
interface describes a set of
routines that will be implemented
by one (or more) COM objects.

type
TToolButtonAccess = class(TToolButton);

...
TToolButtonAccess(MyToolButton).SetToolBar(MyToolBar)

➤ Listing 2: Defining an access
class to access the protected
section of a TToolButton.

76 The Delphi Magazine Issue 57

Simple COM objects may choose to
implement just one interface. More
complex COM objects will choose
to implement more than one.

An Automation server is a COM
object that implements a specific
interface (IDispatch) in order for it
to work in a prescribed manner.
ActiveX controls are nothing more
than COM objects that implement
a different predefined list of inter-
faces required for them to work as
expected (as visual controls that
can be used in many development
tools). In fact, ActiveX controls
have around 18 interfaces to imple-
ment, including IDispatch, which
makes ActiveX controls special
cases of Automation servers.

ActiveX controls were histori-
cally called OLE Custom Controls
in a previous incarnation. The term
‘OLE Custom Control’ was abbrevi-
ated (in some bizarre fashion) to
OCX, so what we now refer to as an
ActiveX control used to be referred
to as an OCX. It is quite common for
the DLL that hosts an OCX or
ActiveX (or indeed any COM object
for that matter) to be given an OCX
file extension, but this is not neces-
sary. Clearly DBCLIENT.DLL has not
been given such an extension.

In summary, DBCLIENT.DLL is not
an OCX, but could be given an OCX
file extension. In fact, it is an
in-proc COM server implementing
one or more COM Objects. The
benefit of an in-proc COM server
over a DLL is that objects can be
made available as opposed to just
routines. A DLL can become an
in-proc COM server by exporting
the four key routines from the
ComServ unit, and then having COM
objects defined within it. Once the
COM server is registered, it is
ready for use.

Adding ActiveX/
ActiveForm Properties

QI have been making a number
of ActiveX controls and

ActiveForms. I would like to define
new properties for them, which
show up in the Object Inspector
(or equivalent) in whatever
development tool they are in-
stalled into. How do I accomplish
this?

AThe implementation of an
ActiveX control or

ActiveForm already has some nice
generic code that saves and loads
all the existing properties. What
you need to do is hook into that
system to achieve your goal.

In a VCL-generated ActiveX or
ActiveForm, there are two classes
involved. One is the ActiveX class,
which is the COM object that
implements all the interfaces
required by an ActiveX host. This
class inherits from TActiveXControl
(a derivative of TAutoObject, the
class used for Automation objects)
and will ultimately interact with
applications that host the ActiveX
control. The other class involved is
the visual control that is repre-
sented by the ActiveX control,
which must be something
inherited from TWinControl.

So, to turn a TWinControl compo-
nent into an ActiveX control, the
ActiveX project contains a COM
class inherited from TActiveX-
Control that implements all the
required interfaces to do the job.

The class factory used for
ActiveX controls is TActiveX-
ControlFactory. ActiveForm con-
trols use a simple derivative called
TActiveFormFactory. An instance of
the appropriate class factory is
created in the initialisation section
of the generated unit that contains
the ActiveX or ActiveForm. It has
two parameters defined to take the
ActiveX class (ActiveXControl-
Class) and the represented compo-
nent class (WinControlClass).

When you make an ActiveX con-
trol in Delphi, it asks which
TWinControl component class you
would like to turn into an ActiveX
control. This becomes the
WinControlClass parameter for the
class factory. ActiveXControlClass
is set to the class that is defined in
the generated unit, whose name
defaults in the ActiveX control
wizard to the TWinControl class
with an X suffix.

In the case of an ActiveForm
class, things are the other way
round. The ActiveXControlClass
parameter is set to the VCL
TActiveFormControl class (from the
AXCtrls unit). The WinControlClass
parameter is set to the form

class, as defined in the generated
unit.

When the class factory is asked
for an ActiveX control object, it
creates an instance of the class
represented by ActiveXControl-
Class and returns it. When the
ActiveXControlClass object gets
created, it creates an instance of
the WinControlClass object as a
child of the ActiveX container (the
window that hosts the ActiveX
control).

As you develop an ActiveX con-
trol or an ActiveForm, you can
define properties in the custom
interface that is visible in the type
library editor. In the case of an
ActiveX control, this interface is
implemented in the ActiveX-
ControlClass COM class that is
defined in the generated unit. This
makes sense, as that is the object
that will be liaising with the
ActiveX container.

In the case of an ActiveForm,
things are different, because of the
converse situation laid out above.
Because the class being defined in
the generated unit is the
WinControlClass, that is the class
that implements the custom
IDispatch-based interface. This is
odd as this is not the real COM
Object.

However, the base COM object
in an ActiveForm scenario,
TActiveFormControl manages to
overcome this possible interface
location issue by having a special
implementation of the IUnknown
method QueryInterface. Whenever
an interface is queried for, the
COM object first checks whether it
is supported by the actual form
object (the one that implements
the IDispatch-based interface).
This way, the container can find all
the interfaces it requires.

When an ActiveX/ActiveForm is
loaded or saved, the container of
the ActiveX control does this by
using the IPersistPropertyBag,
IPersistStreamInit or IPersist-
Storage interfaces implemented by
the ActiveXControlClass. In the
case of IPersistPropertyBag, the
ActiveX control iterates through
each read/write property in the
IDispatch-based interface that
describes the ActiveX control,

May 2000 The Delphi Magazine 77

reading/writing the IDispatch
property from/to an IPropertyBag
interface implemented by the
container.

In the cases of IPersist-
StreamInit and IPersistStorage,
the ActiveX control is given either
an IStream interface or an IStorage
interface. The ActiveX code takes
the given IStream, or in the case of
an IStorage obtains an IStream
from it. It passes it to a TOleStream
wrapper object and then uses stan-
dard VCL component reading/writ-
ing methods to load/store the
underlying VCL TWinControl
descendant object in the stream.
Those methods work on the basis
of published properties.

This means that to have a new
property available for your
ActiveX control and for it to be
saved and loaded where neces-
sary, you must do two things. You
must publish a property in the
WinControlClass that is being rep-
resented as an ActiveX control,
and then you must add a new prop-
erty to the IDispatch-based inter-
face describing your ActiveX
control (normally done using the
type library editor). The interface
property reader and writer rou-
tines must be coded to access the
property in the WinControlClass.
Strictly speaking, the VCL
published property and the COM
property do not need to have the
same name, but it keeps things
consistent if they do.

Accomplishing these two goals
is simplest with an ActiveForm.
The WinControlClass is the actual
form class, so the property must be
published in that class. The inter-
face that you edit in the type
library editor is implemented by
this class, so the property reader
and writer will also get defined
here. The implementations of
these methods will simply access
the corresponding published
property.

A sample ActiveX library called
ActiveX.Dpr is on the disk. This
project contains an ActiveForm
(called ActiveFormX) which
requires a new textual property.
The property will be called
MyNewFormProp, and will be used to
surface the caption of a label that is

dropped on the form. The first
thing to do is add in the implemen-
tation of a published form property
(see Listing 3).

The next step is to add a new
COM property to the interface.
Choose View | Type Library, select
the IActiveFormX interface and ask
for a new property (either with the
tool buttons or by right clicking).
Give it a name of MyNewFormProp and
a type of either WideString or BSTR,
depending which is available. This
will be dictated by whether the
Language setting on the Type
Library page of the Tools | Envi-
ronment Options... dialog is set to
Pascal or IDL.

When you press the Refresh
button, a COM property reader and
writer routine will be manufac-
tured. These need to be imple-
mented to access the VCL
property, as shown in Listing 4.
Notice that the VCL property
reader and writer routines are
named subtly differently to the
COM reader and writer routines.
The COM versions always have an

underscore character in their
names.

This fairly straightforward
process gets you a new Active-
Form property. With an ActiveX
control, it’s a bit trickier, since the
WinControlClass that needs the
new VCL property is not the one
being defined in the generated
source unit.

To show how to accomplish the
same task with an ActiveX control,
the ActiveX library project on the
disk also has an ActiveX control
defined in it. This is based on a
standard TButton, but could be
based on your own custom compo-
nent class. If it is a custom compo-
nent, it will be easy to add the
published VCL property directly
into that class. If you are using a
stock VCL component, then you’ll
need to write a new inherited class:
you will need to make changes to
the code generated by the ActiveX
control wizard.

TActiveFormX = class(TActiveForm, IActiveFormX)
Label1: TLabel;

private
...
{ My new methods }
// Published property reader
function GetMyNewFormProp: String;
// Published property writer
procedure SetMyNewFormProp(const Value: String);
...

published
property MyNewFormProp: String
read GetMyNewFormProp write SetMyNewFormProp;

end;
...
function TActiveFormX.GetMyNewFormProp: String;
begin
Result := Label1.Caption

end;
procedure TActiveFormX.SetMyNewFormProp(const Value: String);
begin
Label1.Caption := Value

end;

➤ Listing 3: Adding a published VCL property to an ActiveForm.

TActiveFormX = class(TActiveForm, IActiveFormX)
...
protected
...
function Get_MyNewFormProp: WideString; safecall;
procedure Set_MyNewFormProp(const Value: WideString); safecall;
...

end;
...
function TActiveFormX.Get_MyNewFormProp: WideString;
begin
Result := MyNewFormProp

end;
procedure TActiveFormX.Set_MyNewFormProp(const Value: WideString);
begin
MyNewFormProp := Value

end;

➤ Listing 4: Adding a COM
property to an ActiveForm.

78 The Delphi Magazine Issue 57

In the generated ActiveX class,
the VCL component type is refer-
enced three times (see Listing 5). If
you are using a stock VCL class (as
Listing 5 is), you’ll need to change
these references for the new inher-
ited class that we will write.

The inherited class (which will
be called TMyButton) needs to be
declared above the ActiveX class
(TButtonX in this case). The new
property will be similar to the one
we added to the ActiveForm (but
called MyNewButtonProp) and so the
new class will look like Listing 6.

All that is now left is to change
the three references of TButton to
TMyButton, and add a new COM

property to the interface (IButtonX
in this case), just as before. This
time, however, the COM property
reader and writer routine will
access the property in the button
control (see Listing 7).

Another project accompanies
the ActiveX library project on the
disk. This one assumes that you
have imported the ActiveX con-
trols onto Delphi’s component pal-
ette as it has an instance of the
ButtonX and ActiveFormX object on
the form. The custom property of
each of these two controls has had
a value assigned to it. You will find
that the value is stored in the
Delphi form file thanks to the

TButtonX = class(TActiveXControl, IButtonX)
private
FDelphiControl: TButton;
...

end;
...
procedure TButtonX.InitializeControl;
begin
FDelphiControl := Control as TButton;
...

end;
...
initialization
TActiveXControlFactory.Create(ComServer, TButtonX, TButton, Class_ButtonX,
2, '', 0, tmApartment);

end.

TMyButton = class(TButton)
private
FMyNewButtonProp: String;

published
property MyNewButtonProp: String read FMyNewButtonProp write FMyNewButtonProp;

end;

➤ Listing 5: Standard ActiveX code that represents a button control.

➤ Listing 6: A new button class with a new published property.

TButtonX = class(TActiveXControl, IButtonX)
private
FDelphiControl: TMyButton;
...

protected
...
function Get_MyNewButtonProp: WideString; safecall;
procedure Set_MyNewButtonProp(const Value: WideString); safecall;

end;
...
procedure TButtonX.InitializeControl;
begin
FDelphiControl := Control as TMyButton;
...

end;
...
function TButtonX.Get_MyNewButtonProp: WideString;
begin
Result := FDelphiControl.MyNewButtonProp

end;
procedure TButtonX.Set_MyNewButtonProp(const Value: WideString);
begin
FDelphiControl.MyNewButtonProp := Value

end;
initialization
TActiveXControlFactory.Create(ComServer, TButtonX,
TMyButton, Class_ButtonX, 2, '', 0, tmApartment);

end.

➤ Listing 7: A new button class with a new published property.

➤ Figure 2: A custom ActiveX
control property showing in
Delphi.

properties hooking into the read-
ing and writing mechanisms cor-
rectly. You can see the Object
Inspector showing this in Figure 2.

Unhelpful Panel

QI am in the process of up-
grading a Delphi 2 project to

Delphi 5 and I have noticed an in-
consistency in the behaviour of
one of the standard components.
The application uses the context
help option (the question mark
button on the caption bar that can
be used to get context-sensitive
help for controls with a non-zero
HelpContext property).

I use a lot of panels, with various
controls on them. The problem is
that many of my panels have a non-
zero HelpContext property value.
When compiled under Delphi 2,
the context help button works fine
for all controls including panels.
Having recompiled the project in
Delphi 5, the panels no longer
react to the context help button.
How can I fix this problem?

AThis one took some hunting
to track down. Eventually I

found the change in the VCL
source that causes the problem.
The change occurred in Delphi 3,
which was the first version to
break the panel component’s
context help support.

80 The Delphi Magazine Issue 57

It seems that all TWinControl
descendants have the potential of
being a parent to other controls.
Programmatically, any component
that inherits from TWinControl can
be assigned to the Parent property
of any control. In the Form
Designer, however, you can only
make a control become a child of
another control that has the
csAcceptsControls member in its
ControlStyle set property. This is
why at design-time you can have
controls become children of
panels and group boxes, but not
children of buttons and edit
controls.

In the CreateParams method of
TWinControl in Delphi 2, if the con-
trol has csAcceptsControls in the
ControlStyle property then the
underlying window style has the
WS_CLIPCHILDREN flag added to it. In
Delphi 3 and later, the window
style is modified the same way, but
additionally the extended window
style has the WS_EX_CONTROLPARENT
flag added to it.

It is this modification to the
extended window style that causes
the problem. Windows that are
described by this flag as being a
potential parent of other controls
are considered not appropriate for
context-sensitive help by Windows
(for reasons best known to
Microsoft), so all Delphi container
controls will suffer this fate
(panels, group boxes, tab sheets
and so on).

Clearly, to remedy the problem,
you must remove this extended
window style from the panel com-
ponent. I see two ways of achieving
this. The simplest way is to use

the GetWindowLong and Set-
WindowLong Win32 API calls.
These can extract and modify
the extended window style
attribute of any window. In the
OnCreate event handler of each
form with problematic panels,
you could call a routine like
the one shown in Listing 8,
which iterates recursively
through all the controls on the
form, modifying the style of
each control which will suffer

from the problem.
You can see this code working in

the sample project HelpTest.dpr in
Figure 3. The project has been
associated with NotePad’s help file
and the panel was given a
HelpContext property of 1000. As
you can see, this is the context
number for the footer help topic.

The other way is to produce a
modified component class, inher-
ited from the affected class, which
does not make use of that extended
style in the first place. Listing 9
shows the class that is defined in
the DCPanel unit (on the disk). It
overrides the CreateParamsmethod
to remove the offending style flag
that was added in by the ancestor
TWinControl class.

An obvious question to ask at
this stage is whether it is safe to
remove this flag. Surely the

Borland developers chose to add it
in for good reason, right? Well,
according to the Windows API help
file, the WS_EX_CONTROLPARENT ext-
ended window style allows the
user to navigate among the child
windows of the control using the
Tab key.

Thinking this might affect how a
panel would operate on a Delphi
modal form, where the panel had
child controls on it, I tested it
before and after removing the
style. It worked just as well either
way, so it seemed perfectly safe to
remove it.

However, checking further with
the Windows SDK, it appears that
removing the flag may affect the
way that GetNextDlgTabItem and
GetNextDlgGroupItem operate.
These two APIs are supposed to
find the next (or previous) tab stop
or control in a group of controls
respectively. If either of these APIs
encounter a window with the
WS_EX_CONTROLPARENT style, then
that window’s children will be
recursively searched.

Clearly, if you never use either of
these APIs, then there is little to
worry about.

➤ Figure 3: Context help invoked
from a fixed panel.

// Remove WS_EX_CONTROLPARENT, where set, to allow context help to work
procedure FixContextHelp(Parent: TControl);
var
I, OldExStyle: Integer;
Handle: HWnd;

begin
if (csAcceptsControls in Parent.ControlStyle)
and (Parent is TWinControl) then begin
Handle := TWinControl(Parent).Handle;
OldExStyle := GetWindowLong(Handle, GWL_EXSTYLE);
SetWindowLong(Handle, GWL_EXSTYLE, OldExStyle and not WS_EX_CONTROLPARENT);
with TWinControl(Parent) do
for I := 0 to ControlCount - 1 do
FixContextHelp(Controls[I]);

end
end;
procedure TForm1.FormCreate(Sender: TObject);
begin
FixContextHelp(Self)

end;

type
THelpPanel = class(TPanel)
protected
procedure CreateParams(var Params: TCreateParams); override;

end;
...
procedure THelpPanel.CreateParams(var Params: TCreateParams);
begin
inherited;
Params.ExStyle := Params.ExStyle and not WS_EX_CONTROLPARENT;

end;

➤ Listing 9: A custom panel component that supports context help.

➤ Listing 8: Modifying the
extended window style of a
panel to enable context help.

May 2000 The Delphi Magazine 81

Corrections
Back in Issue 47 (last July), I was
discussing the habit of setting
object references to nil after
destroying the objects they refer
to. When the object reference is
local, this nil assignment pro-
duces a hint about the assignment
of the value not being used. I
suggested that this code would
disable the hint:

{$Hints Off}
Bmp := nil;

{$Hints On}

Unfortunately, as Neil Cullen
pointed out to me, this suggestion
does not work. The $Hints direc-
tive is procedure-based. Inserting
the directives mid-routine has no
effect. To correctly disable this
hint you must place the $Hints Off
directive before the subroutine,
and $Hints On after the routine.

In Issue 53, the subject of
Authenticode was covered and
I discussed the possibilities of
code signing your ActiveX con-
trols. However, as Kosmas
Chatzimichalis told me recently,

code signing costs money, which
might be beyond the realms of pos-
sibility for shareware authors. An
alternative scheme is to make use
of the Trusted Sites zone in
Internet Explorer.

This option allows you to add an
arbitrary site to a list of sites that
are implicitly trusted. In Internet
Explorer 4, choose View | Internet
Options..., then select the Secu-
rity page. From here, drop down
the Zone combobox and choose

the Trusted Sites zone option (see
Figure 4). You can then use the Add
Sites... button to add in specific
sites to this zone. The security set-
ting for the Trusted Sites zone can
then be set to Low, whilst leaving
the setting for Internet zone set to
High.

Thanks are due this month to
both Neil and Kosmas.

➤ Figure 4: Internet Explorer
Trusted sites zone.

	Where Is My Documents?
	Getting UNC File Names
	Adding Tool Buttons
	Modifying The VCL Source
	COM Terminology Problem
	Adding ActiveX/ActiveForm Properties
	Unhelpful Panel
	Corrections

